Code: CE2T1, ME2T1, CS2T1, IT2T1, EE2T1, EC2T1, AE2T1

I B.Tech - II Semester-Regular/Supplementary Examinations May 2017

ENGINEERING MATHEMATICS - II (Common for all Branches)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \mathrm{x} 2=22 \mathrm{M}$
1.
a) Find the rank of the matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
b) Explain Gauss Seidal Method for solving linear system of three equations in three unknowns.
c) If $A=\left[\begin{array}{lll}2 & 4 & 7 \\ 0 & 1 & 8 \\ 0 & 0 & 3\end{array}\right]$ then write the eigen values of the matrix $\operatorname{Adj}(A)$
d) Prove that the eigen values of A^{-1} are the reciprocals of the eigen values of A
e) Find $L\left\{a^{t}\right\}$
f) Let $f(t)$ and $g(t)$ be any two continuous functions for $\mathrm{t}>0$ then define the convolution product of $f(t)$ and $g(t)$
$g)$ Write the Laplace Transform of Unit Step function.
h) If $f(x)=|\cos x|$ in $(-\pi, \pi)$ then write the value of the Fourier coefficient b_{2}
i) State Fourier integral theorem.
j) Find the Z-Transform of the sequence $\{3,5,6,9,0,1\}$
k) Find the inverse Z-Transform of $\frac{1}{Z^{2}-5 Z+6}$ in the region $|Z|>3$

PART - B

Answer any $\boldsymbol{T H R E E}$ questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Reduce the matrix $A=\left[\begin{array}{cccc}1 & -1 & 2 & -3 \\ 4 & 1 & 0 & 2 \\ 0 & 3 & 0 & 4 \\ 0 & 1 & 0 & 2\end{array}\right]$ to Normal form and Hence find its rank.
b) Solve the system of equations:

$$
\begin{gathered}
x+2 y-z=3 \\
3 x-y+2 z=1 \\
2 x-2 y+3 z=2 \\
x-y+z=-1
\end{gathered}
$$

3. a) Find the eigen values and corresponding eigen vectors of the matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$
b) State Cayley -Hamilton theorem and Verify the

Cayley - Hamilton theorem for the matrix
4. a) Evaluate the Laplace Transform of the functions
i) t sinat
ii) $\frac{\cos a t-\cos b t}{t}$
b) Using Laplace Transform, solve $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}-3 y=$ sint Where $y=\frac{d y}{d t}=0$ at $t=0$.

8 M
5. a) Obtain half range sine series of the function

8 M

$$
\mathrm{f}(\mathrm{X})=\left\{\begin{array}{l}
k x \text { for } 0<x<\pi / 2 \\
k(l-x) \text { for } \pi / 2<x<\pi
\end{array}\right.
$$

b) Find the Fourier Transform of $f(x)$ defined by

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}
1-x^{2} & \text { for }|x| \leq 1 \\
0 & \text { for }
\end{array}|x|>1\right.
\end{aligned} \quad \text { hence evaluate } ~=~\left(\frac{x}{2}\right) d x \text { (}
$$

6. a) Applying the second shifting theorem , evaluate 8 M
i) $Z[\cos (n+1) \theta]$
ii) $Z[\sin (n+1) \theta]$
b) Find Z transform of $\left(\frac{1}{3}\right)^{n}+\left(\frac{1}{4}\right)^{n}$
